Kohonen self-organizing Maps to unravel patterns of dental morphology in space and time
The paper illustrates how the application of a specific version of Artificial Neural Networks, Self-Organizing Maps (SOMs), enabled a more accurate analysis of human dental morphology. SOMs enable the processing of individual samples (dentitions) because they can cope with missing data. In fact, in archaeological samples of human remains, teeth are often broken or missing making a complete set of …
Bidragydere
- M. Ramazzotti (ed.)
Skaberen
- Candilio, F.
- Coppa, A.
- Manni, F.
Udgiver
- Edizioni All'Insegna del Giglio
Emne
- Theoretical and methodological problems
- Simulation AI
- Field archaeology
- artificial intelligence
- Science and technology for Cultural Heritage
- field archaeology
- Kunstig intelligens
Type af genstand
- articles
Dato
- 2014-01-01
- 2014-01-01
Bidragydere
- M. Ramazzotti (ed.)
Skaberen
- Candilio, F.
- Coppa, A.
- Manni, F.
Udgiver
- Edizioni All'Insegna del Giglio
Emne
- Theoretical and methodological problems
- Simulation AI
- Field archaeology
- artificial intelligence
- Science and technology for Cultural Heritage
- field archaeology
- Kunstig intelligens
Type af genstand
- articles
Dato
- 2014-01-01
- 2014-01-01
Ejerinstiution
Aggregator
Mellemliggende udbyder
Rettigheder for medierne i denne optagelse (medmindre andet er angivet)
- http://creativecommons.org/licenses/by-nc-sa/4.0/
Tidsmæssig
- https://www.wikidata.org/wiki/Q6939
- 21. århundrede
Steder
- http://sws.geonames.org/3169070/
Identifikator
- A_C_oai_Archive_sup.xml:810
- A_C_oai_Archive_sup.xml_810
Omfang
- pp. 231-242
Sprog
- en
- eng
Er en del af
- Europeana Archaeology
- ARCHEOSEMA. Artificial Adaptive Systems for the Analysis of Complex Phenomena. Collected Papers in Honour of David Leonard Clarke
Leverende land
- Italy
Navn på samling
Første gang offentliggjort på Europeana
- 2020-05-22T18:45:13.398Z
Sidste gang opdateret fra den ejerinstiution
- 2020-05-22T18:45:13.398Z