Kohonen self-organizing Maps to unravel patterns of dental morphology in space and time
The paper illustrates how the application of a specific version of Artificial Neural Networks, Self-Organizing Maps (SOMs), enabled a more accurate analysis of human dental morphology. SOMs enable the processing of individual samples (dentitions) because they can cope with missing data. In fact, in archaeological samples of human remains, teeth are often broken or missing making a complete set of …
Kaasautorid
- M. Ramazzotti (ed.)
Looja
- Candilio, F.
- Coppa, A.
- Manni, F.
Kirjastus
- Edizioni All'Insegna del Giglio
Teema
- Theoretical and methodological problems
- Simulation AI
- Field archaeology
- artificial intelligence
- Science and technology for Cultural Heritage
- field archaeology
- Tehisintellekt
Üksuse liik
- articles
Kuupäev
- 2014-01-01
- 2014-01-01
Kaasautorid
- M. Ramazzotti (ed.)
Looja
- Candilio, F.
- Coppa, A.
- Manni, F.
Kirjastus
- Edizioni All'Insegna del Giglio
Teema
- Theoretical and methodological problems
- Simulation AI
- Field archaeology
- artificial intelligence
- Science and technology for Cultural Heritage
- field archaeology
- Tehisintellekt
Üksuse liik
- articles
Kuupäev
- 2014-01-01
- 2014-01-01
Pakkuja institutsioon
Agregaator
Vahendusteenuse osutaja
Selles üksuses sisalduva meedia õiguste avaldus (kui pole teisiti märgitud)
- http://creativecommons.org/licenses/by-nc-sa/4.0/
Ajaline
- https://www.wikidata.org/wiki/Q6939
- 21. sajand
Kohad
- http://sws.geonames.org/3169070/
Identifikaator
- A_C_oai_Archive_sup.xml:810
- A_C_oai_Archive_sup.xml_810
Ulatus
- pp. 231-242
Keel
- en
- eng
On osa
- Europeana Archaeology
- ARCHEOSEMA. Artificial Adaptive Systems for the Analysis of Complex Phenomena. Collected Papers in Honour of David Leonard Clarke
Pakkuja riik
- Italy
Kollektsiooni nimi
Esimest korda avaldati Europeana
- 2020-05-22T18:45:13.398Z
Viimati andmeid pakkuvast institutsioonist uuendatud
- 2020-05-22T18:45:13.398Z