Kohonen self-organizing Maps to unravel patterns of dental morphology in space and time
The paper illustrates how the application of a specific version of Artificial Neural Networks, Self-Organizing Maps (SOMs), enabled a more accurate analysis of human dental morphology. SOMs enable the processing of individual samples (dentitions) because they can cope with missing data. In fact, in archaeological samples of human remains, teeth are often broken or missing making a complete set of …
Suradnici
- M. Ramazzotti (ed.)
Stvorio/la
- Candilio, F.
- Coppa, A.
- Manni, F.
Izdavač
- Edizioni All'Insegna del Giglio
Tema
- Theoretical and methodological problems
- Simulation AI
- Field archaeology
- artificial intelligence
- Science and technology for Cultural Heritage
- field archaeology
- Umjetna inteligencija
Vrsta predmet
- articles
Datum
- 2014-01-01
- 2014-01-01
Suradnici
- M. Ramazzotti (ed.)
Stvorio/la
- Candilio, F.
- Coppa, A.
- Manni, F.
Izdavač
- Edizioni All'Insegna del Giglio
Tema
- Theoretical and methodological problems
- Simulation AI
- Field archaeology
- artificial intelligence
- Science and technology for Cultural Heritage
- field archaeology
- Umjetna inteligencija
Vrsta predmet
- articles
Datum
- 2014-01-01
- 2014-01-01
Institucija iz koje dolazi
Agregator
Posredni dobavljač
Uvjeti korištenja medija u ovom zapisu (osim ako nije drugačije navedeno)
- http://creativecommons.org/licenses/by-nc-sa/4.0/
Vremenski
- https://www.wikidata.org/wiki/Q6939
- 21. stoljeće
Mjesta
- http://sws.geonames.org/3169070/
Identifikator
- A_C_oai_Archive_sup.xml:810
- A_C_oai_Archive_sup.xml_810
Opseg
- pp. 231-242
Jezik
- en
- eng
Dio je
- Europeana Archaeology
- ARCHEOSEMA. Artificial Adaptive Systems for the Analysis of Complex Phenomena. Collected Papers in Honour of David Leonard Clarke
Država iz koje dolazi
- Italy
Naziv zbirke
Prvi put objavljeno na Europeana
- 2020-05-22T18:45:13.398Z
Zadnji put ažurirano od institucije koja pruža podatke
- 2020-05-22T18:45:13.398Z