Kohonen self-organizing Maps to unravel patterns of dental morphology in space and time
The paper illustrates how the application of a specific version of Artificial Neural Networks, Self-Organizing Maps (SOMs), enabled a more accurate analysis of human dental morphology. SOMs enable the processing of individual samples (dentitions) because they can cope with missing data. In fact, in archaeological samples of human remains, teeth are often broken or missing making a complete set of …
Atbalstītāji
- M. Ramazzotti (ed.)
Autors
- Candilio, F.
- Coppa, A.
- Manni, F.
Izdevējs
- Edizioni All'Insegna del Giglio
Temats
- Theoretical and methodological problems
- Simulation AI
- Field archaeology
- artificial intelligence
- Science and technology for Cultural Heritage
- field archaeology
- Mākslīgais intelekts
Digitālais objekts veids
- articles
Datums
- 2014-01-01
- 2014-01-01
Atbalstītāji
- M. Ramazzotti (ed.)
Autors
- Candilio, F.
- Coppa, A.
- Manni, F.
Izdevējs
- Edizioni All'Insegna del Giglio
Temats
- Theoretical and methodological problems
- Simulation AI
- Field archaeology
- artificial intelligence
- Science and technology for Cultural Heritage
- field archaeology
- Mākslīgais intelekts
Digitālais objekts veids
- articles
Datums
- 2014-01-01
- 2014-01-01
Piegādājošā iestāde
Agregators
Tiesību statuss šim digitālajam objektam (ja nav norādīts citādi)?
- http://creativecommons.org/licenses/by-nc-sa/4.0/
Periods
- https://www.wikidata.org/wiki/Q6939
- 21. gadsimts
Vietas
- http://sws.geonames.org/3169070/
Identifikators
- A_C_oai_Archive_sup.xml:810
- A_C_oai_Archive_sup.xml_810
Apjoms
- pp. 231-242
Valoda
- en
- eng
Ir daļa no
- Europeana Archaeology
- ARCHEOSEMA. Artificial Adaptive Systems for the Analysis of Complex Phenomena. Collected Papers in Honour of David Leonard Clarke
Nodrošinošā valsts
- Italy
Kolekcijas nosaukums
Pirmo reizi publicēts Europeana
- 2020-05-22T18:45:13.398Z
Pēdējoreiz atjaunināts no piegādājošās iestādes
- 2020-05-22T18:45:13.398Z