Kohonen self-organizing Maps to unravel patterns of dental morphology in space and time
The paper illustrates how the application of a specific version of Artificial Neural Networks, Self-Organizing Maps (SOMs), enabled a more accurate analysis of human dental morphology. SOMs enable the processing of individual samples (dentitions) because they can cope with missing data. In fact, in archaeological samples of human remains, teeth are often broken or missing making a complete set of …
Medverkande
- M. Ramazzotti (ed.)
Upphovsman
- Candilio, F.
- Coppa, A.
- Manni, F.
Utgivare
- Edizioni All'Insegna del Giglio
Ämne
- Theoretical and methodological problems
- Simulation AI
- Field archaeology
- artificial intelligence
- Science and technology for Cultural Heritage
- field archaeology
- Artificiell intelligens
Typ av objekt
- articles
Datum
- 2014-01-01
- 2014-01-01
Medverkande
- M. Ramazzotti (ed.)
Upphovsman
- Candilio, F.
- Coppa, A.
- Manni, F.
Utgivare
- Edizioni All'Insegna del Giglio
Ämne
- Theoretical and methodological problems
- Simulation AI
- Field archaeology
- artificial intelligence
- Science and technology for Cultural Heritage
- field archaeology
- Artificiell intelligens
Typ av objekt
- articles
Datum
- 2014-01-01
- 2014-01-01
Tillhandahållande institution
Aggregator
Mellanliggande leverantör
Rättighetsmärkning för media i detta objekt (om inte annat anges)
- http://creativecommons.org/licenses/by-nc-sa/4.0/
Temporal
- https://www.wikidata.org/wiki/Q6939
- 2000-talet
Platser
- http://sws.geonames.org/3169070/
Identifierare
- A_C_oai_Archive_sup.xml:810
- A_C_oai_Archive_sup.xml_810
Utsträckning
- pp. 231-242
Språk
- en
- eng
Är del av
- Europeana Archaeology
- ARCHEOSEMA. Artificial Adaptive Systems for the Analysis of Complex Phenomena. Collected Papers in Honour of David Leonard Clarke
Tillhandahållande land
- Italy
Samlingens namn
Första gången publicerad på Europeana
- 2020-05-22T18:45:13.398Z
Sista uppdateringen från tillhandahållande institution
- 2020-05-22T18:45:13.398Z